

Hochschule Anhalt

Anhalt University of Applied Sciences

Energy-saving Intelligent Street Lighting System

Problem Statement

- Goal of public lighting systems
 - Keeping public space of settlements safe at dark times of day
 - Street lighting
 - Lighting of parking lots
 - Lighted highways
 - Problem of the "conventional" street lighting:
 - High financial burden to the public administrations
 - At the edges of the city and in settlements almost off use
 - Unnecessary light pollution of the environment

Possible Solutions

1) Switching off lights after 24:00

- Eliminates the main goal of public lighting systems keeping a pedestrian in a "safe" lighting zone
- 2) Switching off each second lamp
 - Also reduces the security and convenience factor significantly
- 3) Equip each lamp with a motion sensor and switch it on/off upon detected motion
 - Limited range of detection
 - Inertia of the lamps effect of switching on behind the pedestrians

Very limited area of illumination

More intelligent way - communication among the lamps

Motion sensor in each street
lamp

5

Future Internet Lab Anhalt

- Pedestrian movement estimation
- Control lamps' operation:
 - brightness
 - timing

4

More intelligent way - communication among the lamps

- Spanning of illuminated area along pedestrians' paths, e.g.:
 - 250 m ahead / behind
 - Hold-on time 5 min

Operation example (1)

Step 0. Idle, all lamps are off. Motion detection is on

Operation example (2)

Step 1. Person detected at the edge lamp. 3 lamps span an illuminated area

Operation example (3)

Step 2. Person detected at the second lamp. Illuminated area is now ahead and behind the person

Operation example (4)

Step 3. At a crossing, each possible path must be illuminated

Operation example (5)

Step 4. After passing the crossroad the left part can be switched off

System concept

- Linux SoC-based system for communication and management
- Switching on/off, dimming the lamps
- Message exchange with neighboring lamps
- Communication with the central management system

SmartLighting - the communication concept

S

TS.

15

5

1S,5,

- Mesh network over all lamps
 - Using IPv6

FIL

Future Internet Lab Anhalt

- Auto-configuration of the network
 - IPv6 addresses as position index
- Application-specific IP routing protocol for message delivery
- GPS-based auto-recognition of street topology
- Diversity of network technologies
 - 2.4 GHz (IEEE 802.11x, 802.15.4)
 - PLC
 - UHF technology (868 MHz)

RREP {D,6,5,5}

{S,1,2,

{S,1,0

SmartLighting - the communication concept

- Linux OS on a SoC platform
 - Re-use of open source stacks, libraries and drivers
 - Easy to extend
 - Just extend the software application with new features
 - e.g. dimming instead of simple on/off
 - Easy to maintain
 - Remote access via VPN
 - Integration into a central (communal) lighting management system possible
- A lighting point becomes a powerful network node
 - Advanced applications possible
 - WiFi access point
 - Public security announcements
 - Route information

Development status (1)

- 2-nd generation of lamp prototypes
 - ~ 50 lamps in total
 - Field tests are possible
- Mesh routing protocol for seamless IP-based connectivity
- SmartLighting API for central system monitoring / management purposes

Development status (2)

- Work on object detection
 - PIR sensor
 - Ultrasonic sensor
 - X-band detector
- Other options of object recognition and motion detection
 - IR-camera
 - Hybrid sensors

Development status (3)

- First field test with real lamps on a street with 20 lamps under development
 - Integration of SmartLighting circuitry into the lamps of an Austrian manufacturer is ongoing
- Patent on routing means for SmartLighting granted by the Gerrman Patent Office (DPMA) granted 2014
- Additional patent applications in preparation

Innerhalb von neun Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Einspruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine Einspruchsgebühr in Höhe von 200 Euro zu entrichten (§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 1 Patentkostengesetz).

(73) Patentinhaber:	(72) Erfinder:					
Hochschule Anhalt (FH), 06366, Köthen, DE	gleich Patentinhaber					
(74) Vertreter: Schäferjohann, Volker, DiplPhys., 30890, Barsinghausen, DE	(56) Ermittelter Stand der Technik: siehe Folgeseiten					

(54) Bezeichnung: Verfahren zur Beleuchtung von Straßen, Wegen, Plätzen oder Räumen sowie Kommunikationseinheit zur Verwendung bei dem Verfahren

(12)

Power savings impact

- Usage plans
 - Energy saving:
 - Expected savings of 80-90% energy within dark period
- Evaluation of energy savings:
 - Using measurements of real pedestrians' traffic profile

Power savings impact

		Input Data					Auxiliary da	ta			
	price,	price, kWh, €					minutes per hour		60		
	hold	hold on Time, min			360		days per month		30		
	powe	r of lamp, W	150				days per anno		365		
	dark	time, night, h	9				W/kW		1000		
	number of events per night	duration of on-time, h	energy consumption per night, kWh	costs per night	con per n	energy osumption nonth, kWh	costs per energy month, € consumptic per year		energy sumption er year	costs per year, €	
SmartLighting	6	1	0,1	0,0225		2,7	0,68		32,85	8,21	
Conventional		20	1,35	0,3375		40,5	10	4	192,75	123,19	total savings
Cost saving		19	1,3	0,3		37,8	9		459,9	115,0	9 3, 3%

Contact Information

Prof. Dr. - Ing. Eduard Siemens Future Internet Lab Anhalt Tel: +49 (0) 3496 67 2327 E-Mail: eduard.siemens@hs-anhalt.de

Prof. Dr. - Ing. Ingo Chmielewski Embedded Systems Lab Tel: +49 (0) 3496 67 2345 E-Mail: ingo.chmielewski@hs-anhalt.de

Future Internet Lab Anhalt – https://fila-lab.de

